Keap1/Nrf2 pathway in the frontiers of cancer and non-cancer cell metabolism

نویسندگان

  • Dionysios V. Chartoumpekis
  • Nobunao Wakabayashi
  • Thomas W. Kensler
چکیده

Cancer cells adapt their metabolism to their increased needs for energy and substrates for protein, lipid and nucleic acid synthesis. Nuclear erythroid factor 2-like 2 (Nrf2) pathway is usually activated in cancers and has been suggested to promote cancer cell survival mainly by inducing a large battery of cytoprotective genes. This mini review focuses on metabolic pathways, beyond cytoprotection, which can be directly or indirectly regulated by Nrf2 in cancer cells to affect their survival. The pentose phosphate pathway (PPP) is enhanced by Nrf2 in cancers and aids their growth. PPP has also been found to be up-regulated in non-cancer tissues and other pathways, such as de novo lipogenesis, have been found to be repressed after activation of the Nrf2 pathway. The importance of these Nrf2-regulated metabolic pathways in cancer compared with non-cancer state remains to be determined. Last but not least, the importance of context about Nrf2 and cancer is highlighted as the Nrf2 pathway may be activated in cancers but its pharmacological activators are useful in chemoprevention.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Resistance and Endurance Trainings on Nrf2/Keap1 Signaling Pathway in Testicular Tissue of Type 2 Diabetic Rats

Background and purpose: The antioxidant Nrf2/Keap1 pathway prevents cellular damages against oxidative stress and this pathway is disrupted following diabetes. The aim of this study was to investigate the effect of endurance and resistance training on antioxidant Nrf2/Keap1 pathway in testicular tissue of diabetic rats. Materials and methods: In this experimental research, 48 male Wistar rats ...

متن کامل

Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis

Cancer cells are hallmarked by high proliferation and imbalanced redox consumption and signaling. Various oncogenic pathways such as proliferation and evading cell death converge on redox-dependent signaling processes. Nrf2 is a key regulator in these redox-dependent events and operates in cytoprotection, drug metabolism and malignant progression in cancer cells. Here, we show that patients wit...

متن کامل

Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer

BACKGROUND Nuclear factor erythroid-2 related factor 2 (NRF2) is a redox-sensitive transcription factor that positively regulates the expression of genes encoding antioxidants, xenobiotic detoxification enzymes, and drug efflux pumps, and confers cytoprotection against oxidative stress and xenobiotics in normal cells. Kelch-like ECH-associated protein 1 (KEAP1) negatively regulates NRF2 activit...

متن کامل

The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer☆

The Keap1-Nrf2 pathway is the major regulator of cytoprotective responses to oxidative and electrophilic stress. Although cell signaling pathways triggered by the transcription factor Nrf2 prevent cancer initiation and progression in normal and premalignant tissues, in fully malignant cells Nrf2 activity provides growth advantage by increasing cancer chemoresistance and enhancing tumor cell gro...

متن کامل

Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer.

Resistance to platinum-based chemotherapy develops in the majority of patients with epithelial ovarian cancer (EOC). Platinum compounds form electrophilic intermediates that mediate DNA cross-linking and induce double-strand DNA breaks. Because the cellular response to electrophilic xenobiotics is partly mediated by Keap1-Nrf2 pathway, we evaluated the presence of Kelch-like ECH-associated prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015